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We make a chemical measurement mostly to help make a rational

decision about a ‘target’, a particular mass of material that is of interest

in manufacturing, commerce, human health, or for cultural purposes.

A target might comprise for example a shipment of a raw material,
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Fig. 1 Design of a balanced duplicated sampling experiment. An
unbalanced design reduces the analytical burden by 25% (see AMCTB
no. 64).

Fig. 2 Results from a duplicated multi-target experiment.
experimentally before the sampling protocol could legitimately
be accepted as appropriate. A further problem needs to be
considered. Successive targets, especially of unprocessed
materials, differ from each other in numerous ways, so
a protocol that delivers a suitable sample from one target may
do otherwise for the next one ostensibly of the same kind.

It is difficult, however, to fault the TS as a qualitative method
of arriving at what is prima facie a reasonable procedure, except
perhaps on the grounds of the effort required. Much of the
theory is commonsensical and, moreover, the process will be
educational for trainee samplers. However, the sampling
procedure thus arrived at will need validation (and possibly
some amendment) before it can be accepted as t for purpose.
This is because it is difficult indeed and oen very laborious to
quantify many of the ‘errors’ (not to mention their interactions,
which are usually ignored), so the ‘correctness’ cannot be taken
for granted. Furthermore the aim of TS is less to make an
explicit estimate of the uncertainty arising from the sampling
than to provide a ‘representative’ sample that can be sent to
a laboratory without contributing any apparent uncertainty.

The experimental school of thought

The alternative school of thought holds that, in a properly
randomised experiment, simply replicating the application of
any sampling protocol gives a useful estimate of the uncertainty
of the resultant measurements arising from sampling. (That is
why the strategy is sometimes confusingly called the
‘Measurement Uncertainty’ (MU) approach.) The protocol
under test could be arrived at by any means: by tradition, by an
evolutionary process, from TS, or simply by judgement based on
experience. If properly conducted, the replication can encom-
pass much of the potential uncertainty and lets us judge
whether the protocol is t for purpose. (The designs shown
below, however, cannot incorporate uncertainty relating to
operator/method bias.)

A parsimonious experimental approach is to make rando-
mised duplication a part of routine sampling (by using a provi-
sional protocol) until the required amount of data is obtained.
This ensures that the uncertainty estimate obtained represents
real-life conditions rather than an articial experimental situ-
ation. The design shown in Fig. 1 (or an even more economical
unbalanced version) is appropriate. Results are collected until
there are enough to allow a reasonably stable estimate of the
between-sample variance by hierarchical ANOVA (analysis of
variance). (Aer that, the occasional duplicate sampling of
a target can be regarded as merging into internal quality control
of sampling.) A set of results from such a test might resemble
those depicted in Fig. 2.

A careful visual examination of the data is an essential
preliminary step, to ensure that a suitable statistical approach is
employed. In Fig. 2 we see successive targets of similar
composition apart from one possibly anomalous target (no. 6).
However, a single anomalous target per se will not affect the
nested ANOVA because the between-target dispersion is not
relevant here. Between-sample variation is apparently greater
than analytical variation. There is no suggestion of
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heteroscedasticity or that the rst sample differs systemically
from the second. Target no. 7 has the biggest difference
between samples but it is not clear visually that the difference is
outlying. Either way, a robust ANOVA can cope with this dataset,
providing an estimate for the ‘typical’ value of the between-
sample standard deviation. The statistics obtained were: grand
mean, 11.1% mass fraction, between-target SD, 0.15; within-
target/between-sample SD, 1.01; analytical (within-sample) SD
0.32.

In instances where the results are heteroscedastic (that is,
the analytical and/or sampling standard deviation varies with
the concentration of the analyte) a more complex type of
statistical analysis may be required. Fig. 3 shows such a dataset.
It is evident there that the dispersion of both analytical and
sample duplicates is greater at high than at low concentrations.
A suitable treatment for this particular dataset might be log-
transformation before ANOVA is attempted. That would tend to
stabilise the variance, a requirement for a usable outcome of
ANOVA. An examination of the residuals would show whether
that strategy had been successful.
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Limitations of the experimental
approach

A clear shortcoming of replication is that, in the event of the
protocol being rejected as being unt for purpose, we have no
immediate diagnostic information to locate and rectify the
source of the problem. Further experiments would be required.
In addition, we have already seen that the duplicate method
fails to incorporate sampler bias and method bias, and for the
present time we have perforce to accept that circumstance. It is
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