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Analytical scientists use regression methods in two main areas.

Calibration graphs are used with the results of instrumental

analyses to obtain concentrations from test samples. Graphical

methods are used to evaluate the results obtained when two

methods, often a novel one and a reference one, are compared by

applying them to the same set of test materials. In either case

outliers or suspect results may occur, and exert big effects on the

plotted regression line and the results derived from it. Robust

methods are well suited to tackling such situations. Here some of

the underlying ideas are summarised: later briefs will describe

some more of the many approaches available.
Calibrations and comparisons

There are several big differences between these two applications

of regression. A calibration experiment uses a modest number of

calibrators (standards, �6–10 of them), their concentrations

spread evenly across the range of interest. One y-value (i.e. the

experimental signal) is plotted for each standard x-value

(concentration). It is often assumed that only y-direction errors

are present, and that such errors are normally distributed and are

similar at all values of x. These assumptions are not essential (see

Technical Briefs 10 and 27), but they simplify the calculation of

the regression line.

In a comparison or validation experiment there may be a large

number of test samples, especially in clinical chemistry where

many specimens are often available and validation is crucial.

There might thus be more than one y-value for a given x-value.

Both x- and y-values will clearly have variation between samples

and experimental errors: these may not be uniform over the

concentration range studied, or have a normal distribution.

These differences, highlighted in the example in Table 1, must

affect the ways in which the results of the two types of experiment

are evaluated statistically.
Table 1 Results from a calibration experiment

x 0 2 4 6 8 10 12 14 16 18
y 0.03 0.21 0.40 0.58 0.84 1.01 1.20 1.57 1.63 1.80
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An example

Point (14, 1.57) seems suspect, especially when the results are

plotted (Fig. 1). The conventional least squares method gives the

equation for the line through all the points as

y ¼ 0.1023x + 0.0065. This line looks inappropriate, as the effect

of the suspect point is that almost all the other points lie below

the fitted line. If we omit the suspect point, the least squares

equation is y¼ 0.0999x + 0.0124. This line provides a better fit to

all the points except for (14, 1.57).

Using the two lines to find the concentration of a test sample

giving a signal (y-value) of 1.40 units, the concentrations

obtained are 13.62 units when all 10 points are used, and 13.89

units when the suspect value is omitted.

This 2% difference is probably not very concerning to many

analysts: but the standard deviations of the concentrations (see

Technical Brief 22) are found to be 0.57 when all ten points are

included, and only 0.22 if just nine points are used. So the choice

of the best line makes a real difference to the estimated quality of

the result.
Fig. 1 Regression lines plotted with (continuous line) and without

(dotted line) the inclusion of a suspect point.

Anal. Methods

http://dx.doi.org/10.1039/c2ay90005j
http://dx.doi.org/10.1039/c2ay90005j
http://dx.doi.org/10.1039/c2ay90005j
http://dx.doi.org/10.1039/c2ay90005j
http://dx.doi.org/10.1039/c2ay90005j


This presents us with a dilemma. Common sense and wishful

thinking suggest that the suspect point should be omitted. But

probability theory shows that results very different from the

expected ones must occur occasionally. So if there is no evidence

of gross errors maybe the suspect measurement should be

retained. Just as when suspect values occur in sets of replicate

measurements, robust methods are of substantial value in

regression applications.
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Tackling the problem

One solution to such dilemmas lies in the use of median-based

methods. The median of a data set is resistant (i.e. robust)

towards the extreme values of the set, and Theil’s Incomplete

Method uses the median to plot regression lines. In our example

the points on the graph are numbered 1, 2, etc in order of

increasing x-value, and the slopes of the lines joining the pairs of

points 1 and 6, 2 and 7, etc are calculated. (With an odd number

of points the middle one is ignored). There are thus five slope

estimates, and their median is taken as the slope of the line. This

slope, used with the coordinates of each point, provides ten

estimates of the intercept, and their median is taken as the true

intercept. This method gives the equation of the line as

y¼ 0.099x + 0.019, a result very similar to the one obtained when

the least squares method is applied after rejection of the suspect

point. Theil’s Incomplete Method is simple and does not assume

any particular distribution of measurement errors (i.e. it is non-

parametric) or that all the errors lie in the y-direction. Despite

these merits the method has not been much used in analytical

chemistry though in the UK, the Department of Environment,

Food and Rural Affairs recommends it for plotting the levels of

critical atmospheric pollutants against time.

One obvious question is – how many suspect points can a given

regression method tolerate before the slope and intercept of the

calculated line are changed? The fraction of the n points that can

be tolerated as outliers is known as the breakdown point of the

method. Common sense and theory show that its maximum

possible value is 0.5 (50%). Least squares results are affected by

even one suspect point, so its breakdown point is (strictly) 1/n but

effectively zero. Simulations show that the Theil Incomplete

Method can tolerate one outlier if n$ 6, and 2 outliers if n$ 10.

This would be adequate for many analytical calibration graphs.

The more complex Theil Complete Method uses all n(n � 1)/2

possible pairwise slopes of the lines from the n points to find the

median slope, and the related method due to Passing and Bablok

is very widely used in method comparison studies in clinical

chemistry. It again uses all the pair-wise slopes to provide the
median slope estimate, but with two refinements. It takes into

account that when many specimens are studied using two

methods, two or more of them may have the same x-values, thus

giving pairwise slopes of �N. Moreover if suspect points arise on

the graph there may be some negative slope values from indi-

vidual pairs. The method takes this into account in a way which

means that the x- and y-values, both subject to variation, can be

interchanged without affecting the result. Normally distributed

data in the x- or y-direction are not assumed, nor is it necessary

that the experimental variations are similar at different analyte

levels, though the ratio of the x- and y-variances sehpair-wise (pai
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