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Fitting a linear functional relationship to data with error on both
variables

It is fairly well known that a basic assumption of regression is
that the y-values (the dependent- or response variable) are
random variables while the x-values (the independent- or
predictor variable) should be error-free. This model often
prevails (or is approximated to) in analytical chemistry
applications, for example in many calibrations. If the condition
is violated, however, the results of the regression are in
principle incorrect and in practice can be sufficiently incorrect
to be misleading. What is far less well known is that a general
method, functional relationship estimation by maximum
likelihood (FREML), is available for use when the regression
assumption is incorrect. FREML provides estimates of the
intercept (a) and slope (b) of the line, plus their standard
errors, that do not suffer from the biases introduced by the
inappropriate use of regression. The method is symmetric in
that the x- and y-variables can be interchanged without
affecting the outcome. It is capable of handling heteroscedastic
data, that is, data points with different precisions.

Regression and functional relationship models
Normal weighted regression is based on a model of the paired data
( x y i ni i, , , .. . ,= 1 ) such that
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where α   and β  are the parameters describing the true line and

ε i  is a random normal error of variance ( )var yi . Estimates ( a b, )

of α   and β   are obtained by minimising the function
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with respect to a and b. The minimisation is done by a simple
application of calculus to give the familiar regression equations.

In functional relationship estimation we use a different model,
namely
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where ε i and ηi  are independent, normally distributed errors of

variances κ i  and λ i  respectively. The functional relationship is

found by minimising
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This formulation follows from the maximum likelihood principle,
which is a statistical estimation procedure that is more general than
the familiar least squares method. Unlike regression, however, the
above minimisation cannot be solved algebraically, but requires an

iterative numerical method. Details of the procedure can be found
elsewhere.1 Fortunately it is simple to program: both a Minitab
macro and a compiled Fortran program to carry out FREML are
available in AMC Software.

Analytical applications of FREML
Typical applications of FREML in analytical chemistry are (i)
calibration with solid reference materials (where the uncertainty on
the reference value may be considerable) and (ii) comparing the
results of two methods (or analysts, or laboratories, etc.) over an
appreciable concentration range and characterising the bias, if any,
between them. Both of these activities may require tests of
significance on a and b and for lack of fit. FREML can
accommodate these requirements by providing standard errors

( ) ( )se ,sea b and a lack of fit statistic.

For example, we could test the hypothesis H0 0:α =  (i.e., that the

line passes through the origin of the graph) by calculating
( )z a aa = se . Likewise we could test H0 1:β =  (that the slope of

the line is unity) with ( ) ( )z b bb = −1 se . The z-values can be

interpreted as a standard normal distribution, so for 95%
confidence we should use a critical value of 1.96 for z .

The lack of fit statistic is the sum of the squares of the scaled
residuals, which we can treat approximately as a chi-squared
variable with n-2 degrees of freedom. A significantly high value of
this statistic suggests either that the variance estimates were
optimistically low (a common failing) or lack of fit. The latter
could be brought about inter alia by uncorrected interference or by
non-linearity in the true form of the relationship. An examination
of a plot of scaled residuals would help to elucidate that difference.

Example
Consider results from the determination of fat in 11 different
foodstuffs by two different methods. The experiment was carried
out to determine whether there was bias between the results of the
two methods over the whole of the usual concentration range. Each
material was analysed by one of the two methods in a number of
different laboratories, and Table 1 shows the mean result and the
variance of the mean result for each material and both methods.
The wide range of the variances is due mainly to the variation in
the number of results that provide the mean. The general level of
relative standard deviation is high, because the data reflect
reproducibility (between laboratory) precision.

An x-y plot of the results and the fitted FREML line are shown in
Figure 1. The error bars show the 95% confidence interval of each
mean. The statistics derived from the FREML fit are shown in
Table 2. (The same outcome is obtained if the x- and y-variables
are interchanged.) Taking a critical value of z = 1 96. for an

approximately 95% confidence level, we see that the intercept is
clearly significantly different from zero, indicating the presence of
a rotational (constant) bias between the methods over the
concentration range studied. In contrast, the slope of the line is not



significantly different from unity, showing that there is no




